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Abstract

Because reliability is a function of scores, and not tests per

se, it is inaccurate to hold that a given test will yield scores

with the same reliability across samples. Therefore, score

reliability should always be reported and interpreted in both

measurement and substantive studies. In an effort to facilitate

this outcome, the present paper is intended to provide an

interpretive framework for applied researchers and others

seeking a conceptual understanding of score reliability. The

paper will: a) review some basic tenets of classical test

theory, b) discuss the salient factors that affect reliability

estimates, with emphasis on coefficient alpha, and c) present

several suggestions toward a better understanding (and use) of

score reliability.
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A Conceptual Primer on Coefficient alpha

In a recently published (and important) report, the

American Psychological Association (APA) Task Force on

Statistical Inference declared the need for all studies to

report measures of effect size along with their statistical

significance results (Wilkinson & APA Task Force on Statistical

Inference, 1999). The Task Force noted:

It is hard to imagine a situation in which a dichotomous

accept-reject decision is better than reporting an actual

2-value or, better still, a confidence interval. .

Always provide some effect-size estimate when reporting a

2-value. (p. 599, emphasis added)

The Task Force went on to state, "Always present effect sizes

for primary outcomes. . . It helps to add brief comments that

place these effect sizes in a practical and theoretical context"

(p. 599, emphasis added).

The mandate to "always" report effect sizes is an important

step beyond the fourth edition of the APA's Publication Manual,

which only recommended reporting of effect sizes in research

(APA, 1994, p. 18). Empirical studies, however, have shown that

this recommendation has had little impact on researchers'

inclusion of effect size information in their articles and even

less impact on consultation of effects for "practical and

4
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theoretical context" (cf. Henson & Smith, 2000; Vacha-Haase,

Nilsson, Reetz, Lance, & Thompson, 2000).

Furthermore, the Task Force (Wilkinson & APA Task Force on

Statistical Inference, 1999) also recommended that authors

"provide reliability coefficients of the scores for the data

being analyzed even when the focus of their research is not

psychometric" (p. 596). This recommendation to report.score

reliability in all studies relates directly to the mandate to

also include effect sizes, because "Interpreting the size of

observed effects requires an assessment of the reliability of

the scores" (p. 596). Effect size magnitude is inherently

attenuated by the reliability of the scores used to obtain the

effect estimate (Reinhardt, 1996). As Reinhardt (1996)

observed,

Reliability is critical in detecting effects in substantive

research. For example, if a dependent variable is measured

such that the scores are perfectly unreliable, the effect

size in the study will unavoidably be zero, and the results

will not be statistically significant at any sample size,

including an incredibly large one. (p. 3)

As a point of illustration, the maximum r2 between two

variables equals the product of the square root of the

reliabilities (cf. Locke, Spirduso, & Silverman, 1987, p. 28),

such that when one variable has alpha = .70 and another variable



Coefficient alpha 5

has alpha = .60, the maximum possible effect would be

[(.70)**.5][(.60)**.5] = (.8367)(.7746) = .6481 = r2.

Accordingly, the reliability of the scores in any study,

measurement and substantive, is central to understanding the

observed relationships between variables. Because all classical

analyses (e.g., t-test, ANOVA, regression) are part of the same

general linear model and are correlational in nature (Bagozzi,

Fornell & Larcker, 1981; Cohen, 1968; Henson, 2000; Knapp, 1978;

Thompson, 1991), most studies should report and interpret results

in light of reliability estimates (Thompson, 1994).

Unfortunately, too few researchers report score reliability

for their studies and even fewer interpret their effects in

light of reliability. This deficit in the literature is likely

due to myriad factors, the chief of which is the common

misconception that reliability inures to tests, rather than

scores (cf. Thompson & Vacha-Haase, 2000; Vacha-Haase, 1998). A

contrary view is given by Sawilowsky (2000a, 2000b).

Indeed, it is scores, not tests, that are either reliable

or unreliable. Furthermore, a given test may yield grossly

divergent score reliability estimates upon different

administrations. The reader is referred to Caruso (2000);

Henson, Kogan, and Vacha-Haase (in press); Viswesvaran and Ones

(2000); Yin and Fan (2000), and Vacha-Haase (1998) for examples

of this phenomenon.

6
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Because reliability inures to scores, different samples,

testing conditions, and any other factor that may impact

observed scores can in turn affect reliability estimates.

Because score reliability inherently attenuates effect sizes, it

also will impact statistical power, an often overlooked point

(Onwuegbuzie & Daniel, 2000). Because effects and power may be

attenuated by the reliability of observed scores, reliability

should always be reported and considered in result

interpretation (Wilkinson & APA Task Force on Statistical

Inference, 1999).

Purpose

Pedhazur and Schmelkin (1991) suggested that many

researchers' misconceptions and unawareness surrounding score

reliability may be due to decreased emphasis on measurement

coursework in doctoral programs. Aiken et al. (1990) verified

this measurement vacuum in doctoral curricula. In a national

survey of American Educational Research Association (AERA)

members, Mittag and Thompson (2000) found less than desirable

understanding of score reliability among respondents. While

reliability is relevant for most situations, the issue is

particularly salient in applied studies, where previously

developed measures are often used to answer substantive research

questions. In these cases, it is the reliability of the

presently obtained scores, not the reliabilities reported from

7
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test manuals or previous studies, that bears directly on

substantive interpretations.

Accordingly, the present paper is intended to provide an

interpretive framework for applied researchers and others

seeking a conceptual understanding of score reliability. The

paper will: a) review some basic tenets of classical test

theory, b) discuss the salient factors that affect reliability

estimates, with emphasis on coefficient alpha, and c) present

several suggestions toward a better understanding (and use) of

score reliability.

Some Basic Tenets of Classical Test Theory

Reliability is concerned with score accuracy. Obviously,

it is important that our scores are accurate, particularly when

there are important ramifications of our interpretations. The

more measurement error that exists in our scores, the less

useful these scores may be for analysis and interpretation.

This section addresses several key points related to the

classical test theory underlying many reliability estimates. The

reader is referred to Crocker and Algina (1986) for a complete

treatment.

Ratio of Score Variances: The General Linear Model in

Measurement

The classical conceptualization of score reliability

relates the concept of score accuracy to "true scores." In

8
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other words, for any measurement occasion that is less than

perfect, a set of scores will contain variance that is true

score variance (accurately measuring the trait of interest) and

variance that is due to error (factors inhibiting accurate

measurement, e.g., fatigue, confusing questions). The sum of

these two variances yields the total score variance of the

observed scores, such that:

2 _,_ 2 2
aTRUE ERROR = 0-TOTAL

Graphically, an example of this relationship may be depicted by

Figure 1. Here only 80% of the total score variance is

attributable to true (accurate) score variance and the remaining

20% is attributable to error. In this case, the coefficient

alpha would be .80 (this statistic will be discussed in detail

later), indicating that 80% of the total score variance is

reliable.

INSERT FIGURE 1 ABOUT HERE

Figure 1 makes explicit the reason effect sizes are

inherently attenuated by reliability. Only reliable variance may

be correlated between any two variables (or linear composite

sets of variables beyond the bivariate -case). It is impossible

to correlate random error across variables, thereby attenuating

an r 2 type effect size to be less than 1.00.

9
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Another generalization of Figure 1 informs us that score

reliability can be conceptualized as a ratio of true score

variance to total (observed) score variance (80% in Figure 1).

Dawson (1999) noted that coefficient alpha was an analog of the

more familiar r2 type effect, and accordingly represents a ratio

of variances. Dawson generalized the r2 statistic and noted:

One alternative formula with which to compute the r2 effect

size is:

r
2

= SOSEXPLAINED SOSTOTAL (1)

. . Formula (1) is a general formula for effect for all

parametric univariate methods. For example, this formula is

correct for r2
, for R2 (a regression effect size), and eta 2.

(an ANOVA and t-test effect size). Conceptually, this

formula asks, "what portion (or percentage) of the total

information can an extraneous variable explain or predict?"

Thus, any variance-accounted-for r2 effect size is a ratio

of variances; the formula could also be written as:

r
2

= VEXPLAINED VTOTAL

= [ SOSEXPLAINED ( n 1) ] / SOSTOTAL / (n 1) .

(2)

Because formula (2) contains n-1 in both the numerator and

the denominator, and these terms cancel, formula (1) is the

more usual and convenient expression of this very general

formula. (pp. 105-106)

10
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For coefficient alpha (a common estimate of reliability;

Cronbach, 1951), this same ratio of variances is apparent in the

formula:

a = k /(k 1) [1
Eak2

( rs,-2 ,
/ aTOTAL2) 1 r

where k = the number of items on the test, Eak2 = the sum of all

the k item variances, and aTOTAL
2 = the variance of the total test

scores. In the alpha formula, the ratio of variances is

captured in the (Eak2 / aTOTAL
2

) term.

Because of this ratio of variances, Dawson (1999) noted

that the general linear model which guides much substantive

statistical analysis also infuses the measurement context: "The

presence of the general linear model (GLM) across both

substantive and measurement analyses can also be seen in the

computation of coefficient alpha (Cronbach, 1951) as the ratio

of two variances" (p. 109). However, as Thompson noted (1999),

"psychometrically alpha involves more than only variances and

their ratios to each other" (p. 12). Most explicitly, the alpha

formula invokes Eak2 as the numerator, which is related to, but

different from, the SOSEXPLAINED noted above (this issue will be

explained momentarily along with illustration of coefficient

alpha).
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Estimates of Measurement Error

Typically, many authors conceptualize three sources of

measurement error within the classical framework: content

sampling of items, stability across time, and interrater error

(see e.g., Anastasi & Urbina, 1997; Hopkins, 1998; Popham,

2000). Content sampling refers to the theoretical idea that the

test is made up of a random sampling of all possible items that

could be on the test. If so, the items should be highly

interrelated, theoretically because they assess the same

construct of interest (e.g., self-esteem, achievement). This

item interrelationship is typically called internal consistency,

which suggests that the items on a measure should correlate

highly with each other if they truly represent appropriate

content sampling. If items are highly correlated, it is

theoretically assumed that the construct of interest has been

measured to some degree of accuracy (i.e., the scores are

reliable).

As a measure of internal consistency and a generalization

of the older split-half method, Kuder and Richardson (1937)

presented their classic formula, KR-20 (named such because the

formula was the 20th listed in their article), as:

KR-20 = k / ( k 1) [1 (E2k2k GTOTAL2 ) r

where k = the number of items on the test, 2k = the proportion of

people answering item k correctly, qk = the proportion of people

12
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answering item k incorrectly (i.e., 1 2k) , and aTOTAL
2 = the

variance of the total test scores. Because Z2kak deals with

mutually exclusive proportions for two possible outcomes, it

should be clear that KR-20 only works when test items are

dichotomously scored (e.g., 0 and 1). This formula may apply to

either achievement or attitude measures, as long as scoring is

dichotomous (e.g., correct v. incorrect, agree v. disagree).

Importantly, the variance of a dichotomously scored item

(0'1(2) will equal pkak, always. If all persons responded the same

to an item, then ak2 = pkak = 0, because no variance would be

present in the scores. Furthermore, if one-half of the

responses were scored "0" and the other half scored "1", then

the scores would have maximum variability. When items are

dichotomously scored, the maximum variability possible is ak2 =

Ekqk 25. This is because each squared deviation score will be

.25, a result of subtracting the mean of .5 from 0 or 1 and

squaring this difference. The sum of these squared deviation

scores (i.e., sum of squares) divided by n (variance) will

result in .25, regardless of sample size (cf. Reinhardt, 1996).

Fourteen years after the advent of KR-20, Cronbach (1951)

introduced coefficient alpha, a more general form of the KR-20

formula. With specific terms defined above, coefficient alpha

is given as:

L 13
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a = k /(k 1) [1 aY(,--k2 6TOTAL2 ) r

Comparison of the KR-20 and alpha formulae reveals that only the

numerator of the variance ratio differs. Because Eak2 = Epkqk as

noted above, it should be apparent that alpha can be used with

dichotomously scored items. However, because the sum of the

item variances is used as the numerator (and not EEkak per se),

alpha can also be used with, measures employing multiple response

categories such as Likert scale data.

In both KR-20 and alpha, it is clear that certain data

features will lead to higher reliability estimates. Holding the

number of items constant (k), reliability will increase as the

sum of item variances decreases and the total score variance

increases.

A second source of measurement error involves the occasion

of measurement. Often, a test-retest reliability estimate

(correlation between scores on two occasions by the same sample)

is calculated to evaluate score stability. If we have

accurately measured someone on the trait if interest with a

test, we should be able to accurately measure them again later.

The degree that our two sets of scores do not correlate

indicates measurement error due to time of measurement. Here a

fundamental tenet of classical test theory is illustrated. As

explained by Henson et al. (in press):

14
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In terms of classical measurement theory (holding the number

of items on the test and the sum of item variances constant),

increased variability of total scores suggests that we can

more reliably order people on the trait of interest, and thus

more accurately measure them. This assumption is made

explicit in the test-retest reliability case, when consistent

ordering of people across time on the trait of interest is

critical in obtaining high reliability estimates.

If the ordering of subjects changes from one testing occasion to

the other, then certainly our accuracy (reliability) in

measuring them is less than perfect. Accordingly, classical

reliability estimates hinge on the variance of the total scores.

As this variance increases, the reliability estimate will also

tend to increase, due to greater theoretical confidence that we

have accurately ordered (measured) the subjects on the trait of

interest.

One implication of this role of total score variance is

that different samples will likely yield different score

reliabilities because the total variance will likely change. For

example, Thompson (1994) observed: "The same measure, when

administered to more heterogeneous or more homogeneous sets of

subjects, will yield scores with differing reliability" (p. 839).

A third source of measurement error, interrater variation, is

only applicable when scores are derived from raters. Because most

15
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testing situations do not involve raters, this source will not be

discussed here.

Importantly, these sources of measurement error are separate

and cumulative (Anastasi & Urbina, 1997). Too many researchers

believe that if they obtain alpha = .90 for their scores, then the

same 10% of measurement error would be found in a test-retest or

interrater coefficient. Instead, assuming 10% error for internal

consistency, stability, and interrater, then the overall

meaurement error would be 30%, not 10%, as these estimates explain

different sources of error. As an aside, generalizability theory

(as opposed to classical test theory) allows for the simultaneous

examination of these sources of error as well as the interactions

between them using ANOVA methodology. The' interested reader is

referred to Kieffer (1999) and Shavelson and Webb (1991) for

accessible treatments of G theory.

A Conceptual Primer on Coefficient alpha

As noted, alpha invokes a general linear model ratio of

explained variance to total variance as a fundamental component

in its calculation. However, as a measure of internal

consistency, it also must account for the intercorrelation among

the items, with the assumption that as items are more highly

correlated, the magnitude of alpha will increase.

Three heuristic examples are used here to illustrate the

salient data features that impact coefficient alpha. These

16
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examples are heavily dependent on Thompson (1999) and Reinhardt

(1996) and are adapted for use here.

Example One: Perfectly Uncorrelated Items

Although test items often are correlated to some degree,

the present example illustrates the impact on alpha when items

are perfectly uncorrelated (r and covariance = 0 for all

pairwise item combinations). Table 1 presents a heuristic data

set for four test items with inter-item correlations of 0; [Note

as well that rxy = COVXY / {(Spx)(SDy)}, and also COVxy = rXY

{ (SIN) (Spy) 1.1

INSERT TABLES 1 AND 2 ABOUT HERE

Based on the above formula for alpha, reliability can be

computed if we can identify the number of items, the sum of the

item variances, and the variance of the total scores. The first

two of these items is given by Table 1, with k = 4 and the sum

of the item variances as .73 = (.22 + .18 + .18 + .15). Crocker

and Algina (1986, p. 95) presented a formula for the calculation

of the total score variance using only the Table 1 data:

6TOTAL2 = E6k2 + [ECOVij (for i<j ) * 2]

Close examination of this formula reveals that total test

score variance can be conceptualized as an additive function of

two components: a) the sum of the item variances (E6k2) and b)

the doubled sum of the unique covariances [ECOVii (for i<j) * 2].

17
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This formula highlights the important point that the total test

score variance is at least partially dependent on the

intercorrelations among the items on a test, a finding in

harmony with the idea that alpha is a measure of internal

consistency. Table 2 presents calculations for determining the

covariance portion of the total test score variance. Table 2

also illustrates the COV to r transformation as noted above.

Using the data from Tables 1 and 2, the total test score

variance is found with:

6TOTAL2 = Eak2 + [ECOVii (for i<j) * 2]

= (.22 + .18 + .18 + .15) + .00
= .73.

These calculations indicate that in this example the total

score variance is only a function of the sum of the individual

item variances, because the covariances were 0. This finding

verifies that "only when the covariances among items are 0 will

SD2 [i.e., total score variance] equal Epq" (Sax, 1974, p. 182).

Now using the total score variance as our last remaining

piece of information, alpha can be found with:

a = k / ( k 1) [1 (Eak2 / aToTAL2)

= 4 /(4 1) [1 (.22 + .18 + .18 + .15) / .73]
= 4 / 3 [1 (.73 / .73)]
= 1.33 [1 1]

= 1.33 [0]

= 0.

Because the items shared no variance, such that the

covariances and correlations were 0, it stands to reason that
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there was no internal consistency among the items. Accordingly,

alpha's calculations led to this logical conclusion (a = 0).

Furthermore, based on this understanding, the alpha formula

reveals that we should expect alpha to increase as the

covariances contribute more to the total score variance.

Example Two: Perfectly Correlated Items

When items are perfectly correlated, and thereby possessing

perfect internal consistency, we should no doubt expect alpha to

reach its maximum of 1 (representing 100% of true score variance

due to content sampling). Table 3 presents data on four

perfectly correlated test items. Table 4 presents the

calculations necessary to obtain the total score variance using

the Crocker and Algina (1986, p. 95) formula. Using these

results, the total score variance is:

aToTAL2 = Eak2 + [ECOV13 (for i<j ) * 2]

= (.22 + .18 + .18 + .15) + (1.08 * 2)
= .73 + 2.16
= 2.89.

Using the total score variance, alpha is:

a = k / (k 1) [1 ( Eak2 / 6TOTAL2 )

= 4 /(4 1) [1 (.22 + .18 + .18 + .15) / 2.89]
= 4 / 3 [1 .73 / 2.89]
= 1.33 [1 .2525952]
= 1.33 [.7474048]
= .9940.

As expected, alpha = 1 (within rounding error due to calculation

of the covariances in Table 3), indicating perfect internal

consistency of scores.

19
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INSERT TABLES 3 AND 4 ABOUT HERE

Example Three: Perfectly Correlated Items with Mixed Signs

It is possible for items to be highly correlated but not

all in the same direction. Table 5 presents the heuristic data

matrices for perfectly correlated items with but with mixed

signs and Table 6 presents calculations that lead to the total

score variance. The total score variance is:

TOTAL2 = Eak2 + [ECOVij (for i<j) * 2]

= (.22 + .18 + .18 + .15) + (-.08 * 2)

= .73 + (-.16)
= .57.

Coefficient alpha is solved as:

a =
=

=

=

=

=

k /(k 1)

4 /(4 1)

4 / 3

1.33
1.33
-.3733.

[1 ( --7m,k2 / TOTAL2 )

[1 (.22 + .18 +..18
[1 .73 / .57]

[1 1.2807018]
[-.2807018]

+ .15) / .57]

Here we have found what Thompson (1999, p. 15) called a

"paradox" in the calculation of alpha. That is, how can alpha

be negative, given that it is a squared metric statistic (r2 type

ratio of variances)! Solving for alpha with the equivalent

formula presented by Sax (1974, p. 181) helps provide a deeper

understanding of alpha's ratio of variances:

a =
=

=

=

=

k /(k 1)

4 /(4 1)

4 / 3.

1.33
-.3733.

ilffTOTAL2 Eak2
[(.57 - .73)

[ -.16 / .57]

[ -.2807018]

/

/ ci'ToTAL2 )

.57]

20
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Here we find that the numerator essentially represents the

covariances between the test items. This follows from the

Crocker and Algina (1986, p. 95) formula used to calculate the

total score variance, which shows total score variance as an

additive function of the sum of the item variances and the

doubled sum of the unique item covariances:

aToTAL2 = Eu1,2 + [ECOVii (for i<j ) * 2] .

In the numerator of the alpha formula above, we have essentially

removed the sum of the item variances (Eak2) from the total score

variance (c5ToTAL2) which leaves the summed item covariances [ECOVij

(for i<j) * 2]. The covariance term is found in the bolded

calculations for alpha above (-.16) and in the calculations in

Table 6. Thus, the alpha ratio includes the sum of the item

covariances over the total score variance. Inspection of the

Crocker and Algina (1987, p. 95) formula for total score

variance reveals that we would expect alpha to increase when the

item correlations are large and in the same direction. This

ratio of a "covariance" to a "variance" is legitimate. As

Thompson (1999) explained:

Is the ratio of the sum of item score covariances to the

total score variance a ratio of apples to oranges (i.e., of

two unlike entities to each other)? No, because, in

addition to both being in a squared metric . . . the [total

21
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score variance] . . . is itself in part a function of

covariances. . (p. 15-16)

The negative result (a = -.37) we find in the present

example, then, is a mathematical artifact that occurs when the

sum of the item variances exceeds the total score variance.

Conceptually, this would mean that the individual variability of

the k items tends to be greater than the shared variability

(covariance/correlation) between the k items. If this is true,

then internal consistency suffers because the items appear to be

measuring different constructs! In keeping with a classical test

theory perspective, the psychometric properties of alpha (and

KR-20) capture this conceptual expectation.

Toward a Better Understanding (and Use) of Score Reliability

As noted, many researchers fail to report score reliability

for their data, leaving the reader to guess whether the scores

were reliably measured and to what degree, if any, the observed

effects were attenuated by measurement error. Furthermore, it is

all too common to see researchers referring to the "reliability

of the test" when, in fact, reliability inures to scores, not

tests, and can vary considerably across samples.

The etiology of these errors in reporting practice is

likely complex. However, as Thompson and Vacha-Haase (2000)

noted, "some people use the phrase 'the reliability of the test'

as a telegraphic shorthand in place of truthful but longer

2,)
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statements (e.g., 'the reliability of the test scores')" (p.

178). Worthen, White, Fan, and Sudweeks (1999) also noted:

"many have adopted the shorthand of speaking of the test's

reliability, a sin that can probably be forgiven as long as you

understand this critical distinction [between reliability of

scores versus tests]" (p. 95, emphasis in original).

Unfortunately, as Thompson (1992) explained, "the problem is

that sometimes we unconsciously come to think what we say or

what we hear, so that sloppy speaking does sometimes lead to a

more pernicious outcome, sloppy thinking and sloppy practice"

(p. 436) .

Pedhazur and Schmelkin (1991) placed a portion of the blame

on inadequate doctoral curricula, noting that

although most programs in sociobehavioral sciences,

especially doctoral programs, require a modicum of exposure

to statistics and research design, few seem to require the

same where measurement is concerned. Thus, many students

get the impression that no special competencies are

necessary for the development and use of measures. (p. 2-3)

In an empirical evaluation of doctoral curricula, Aiken et al.

(1990) also noted little emphasis on measurement issues. With

the above discussion in mind, the following items are presented

in effort to help further better understanding and use of score

reliability.

23
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Understand that Reliability Affects Power

Reliability inherently attenuates the maximum possible

magnitude of relationships between variables (see above for

discussion of attenuation of effect size). Accordingly, all else

being constant, poor score reliability will reduce the power of

statistical significance tests (cf. Onwuegbuzie & Daniel, 2000).

When effects are reduced, they become harder to find.

Researchers would be compelled to increase sample size or their

2CRITICAL level to compensate for this loss of power.

When researchers find non-statistically significant results

due to poor measurement, the bottom-line ramifications may

include greater difficulty publishing in a literature biased

toward statistically significant results, ignoring potentially

meaningful effects, and a perpetuated misunderstanding of why

the results were not statistically significant (i.e., ignoring a

potential measurement problem). For a more complete discussion

of statistical significance tests, the reader is referred to the

seminal work of Cohen (1990, 1994) as well as Henson and Smith

(2000) and Thompson (1994, 1996).

Reporting Practices and Interpretation

Researchers should report reliability for the scores at

hand, and not depend on estimates from prior studies or test

manuals. As correctly noted by Gronlund and Linn (1990),

"Reliability refers to the results obtained with an evaluation
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instrument and not to the instrument itself. Thus it is more

appropriate to speak of the reliability of 'test scores' or the

'measurement' than of the 'test' or the 'instrument'" (p. 78,

emphasis in original). Furthermore, researchers would do well to

use precise language when referencing the reliability of their

scores.

Unfortunately, empirical studies confirm that very few

researchers actually report reliability estimates for their data

(cf. Caruso, 2000; Vacha-Haase, 1998; Yin & Fan, 2000). For

example, Yin and Fan observed that only 7.5% of articles employing

the Beck Depression Inventory reported precise reliability

estimates for the data in hand. Examples of inaccurate language

use are also common.

Because reliability affects power by attenuating effect

sizes, results should be interpreted in light of the obtained

reliability. Small effects may be due, in part, to poor

measurement. Furthermore, large effects are only possible to the

degree allowed by the integrity of the scores. Outcomes on

statistical significance tests may be adversely affected by

measurement problems. Unfortunately, because so few researchers

report reliability, and even fewer interpret results in light of

reliability, the impact of this phenomenon is unknown. As

researchers report reliability for the data in hand, and consider

these estimates when interpreting their results, more will be
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learned about reliability's impact on power, effect sizes, and

statistical signficance tests.

Reliability Generalization Studies

Because reliability may, and does, vary upon different

administrations of a test, Vacha-Haase (1998) employed a meta-

analytic method called "reliability generalization" (RG) that

allows examination of the variability of score reliability across

studies. In addition, coded study characteristics (such as

composition and variability) can be used as potential predictors

of reliability variation, thereby providing some evidence of which

sampling conditions most impact score reliability. Vacha-Haase's

method is based on the older validity generalization approach

(Hunter & Schmidt, 1990; Schmidt & Hunter, 1977), and represents

an important development in the examination of score integrity.

A primary benefit of RG studies is the cumulative

information they may yield in describing study characteristics

that impact reliability estimates for scores from a given test,

and, perhaps, study characteristics that consistently impact

score reliability across different tests. It is also possible to

characterize score reliability for constructs, rather than for

scores on a single test per se. For example, Henson et al. (in

press) examined the construct of teacher self-efficacy across

several instruments.
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In order for the benefit of RG studies to be realized,

however, multiple RG studies must be conducted and receive

recognition in the published literature. One significant barrier

to this benefit is the failure of researchers to report

reliability coefficients for the scores at hand (which become

the dependent variable in an RG study). As metaphorically

illustrated by Thompson and Vacha-Haase (2000),

. it is important to remember that RG studies are a

meta-analytic characterization of what is hoped is a

population of previous reports. We may not like the

ingredients that go into making this sausage, but the RG

chef can only work with the ingredients provided by the

literature. (p. 184)

Accordingly, reporting of reliability coefficients would not

only inform the study in which the reliability was reported, but

also facilitate meta-analytic RG studies. Readers are referred

to Vacha-Haase (1998) and Thompson and Vacha-Haase (2000) for

more compete discussions of RG.

Summary

From a classical test theory perspective, score reliability

relates to true score variance in a set of observed scores. It

is presumed that the true score variance represents an accurate

measurement of the construct of interest. There are a variety

of classical test theory reliability estimates, including
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internal consistency and test-retest coefficients. The present

paper presented a conceptual understanding of a measure internal

consistency, coefficient alpha, as an index of the ratio of true

to total score variance. Importantly, reliability is a function

of the scores obtained for a given measure, and are not a

function of the measure/test itself. Therefore, researchers

ought to report reliability for the data at hand and interpret

results in light of the obtained estimates. This practice would

move the field toward a better understanding and use of score

reliability. It would also facilitate more (and more accurate)

reliability generalization studies that characterize measurement

error across test administrations.
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Table 1

Example One: Item Correlations (Covariances) Are 0

Var.

Correlation Variance/Covariance

1 2 3 4 1 2 3 4

1

2

3

4

1.00

.00

.00

.00

1.00

.00

.00

1.00

.00 1.00

.22

.18

.18

.15

.00

.00

.00

.00

.00 .00

Note. Item score variances are underlined and represent the
diagonal of the variance/covariance matrix.
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Table 2

Calculation of Total Test Score Variance (aToTAL2) for Example One

Pairing COV/Variance r/SD

i < j COVij ail rij SDi SDI COVij'

1 2 .00 .22 .18 .00 .47 .42 .00
1 3 .00 .22 .18 .00 .47 .42 .00
1 4 .00 .22 .15 .00 .47 .39 .00

2 3 .00 .18 .18 .00 .42 .42 .00
2 4 .00 .18 .15 .00 .42 .39 .00

3 4 .00 .18 .15 .00 .42 .39 .00

ECOVij .00

ECOVij * 2 = .00

Note. COViii represents the recalculated covariance using COVii' =
rij (SDi * SDI). These estimates match the original covariances
(COVii) and illustrate the r to COV transformation.
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Table 3

Example Two: Item Correlations (Covariances) Are 1

Correlation Variance/Covariance

Var. 1 2 3 4 1 2 3 4

1 1.00 .22

2 1.00 1.00 .20 .18

3 1.00 1.00 1.00 .20 .18 .18

4 1.00 1.00 1.00 1.00 .18 .16 .16 .15

Note. Covariances were found with COVij = rij (SDi * SDi), where
the standard deviations are the square root of the variance for
the variable. Covariances are rounded to two decimal places.
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Table 4

Calculation of Total Test Score Variance (6ToTAL2) for Example Two

Pairing COV/Variance r/SD

i < COVii 6i2 cri2 Lij SDi SDI

1 2 .20 .22 .18 1.00 .47 .42 .20
1 3 .20 .22 .18 1.00 .47 .42 .20

1 4 .18 .22 .15 1.00 .47 .39 .18

2 3 .18 .18 .18 1.00 .42 .42 .18

2 4 .16 .18 .15 1.00 .42 .39 .16

3 4 .16 .18 .15 1.00 .42 .39 .16

ECOV13 = 1.08

ECOV13 * 2 = 2.16

Note. COVii' represents the recalcUlated covariance using COVj' =
rij (SDi * SDI). These estimates match the original covariances
(COVij) , after rounding.
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Table 5

Example Three: Varied Item Intercorrelations with Mixed Signs

Correlation Variance/Covariance

Var . 1 2 3 4 1 2 3 4

1 1.00 .22

2 -1.00 1.00 -.20 .18

3 -1.00 1.00 1.00 -.20 .18 .18

4 -1.00 1.00 1.00 1.00 -.18 .16 .16 .15

Note. Covariances were found with COVij = rij (SDi * SEW, where
the standard deviations are the square root of the variance for
the variable. Covariances are rounded to two decimal places.

39



Coefficient alpha 39

Table 6

Calculation of Total Test Score Variance (6ToTAL2) for Example
Three

Pairing COV/Variance r/SD

i < j COVij 0.i2
rii SDi SDi COVii'

1 2 -.20 .22 .18

1 3 -.20 .22 .18

1 4 -.18 .22 .15

1.00 .47 .42 -.20
1.00 .47 .42 -.20
1.00 .47 .39 -.18

2 3 .18 .18 .18 1.00 .42 .42 .18

2 4 .16 .18 .15 1.00 .42 .39 .16

3 4 .16 .18 .15 1.00 .42 .39 .16

ECOVij = -.08

ECOVij * 2 = -.16

Note. COVii' represents the recalculated covariance using COVij' =
rij (SDi * SDi).
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Total Test Score Variance

Error Variance (.20)

True/Reliable Variance (.80)

Figure 1. Illustration of classical test theory ratio of true to

total score variance (alpha = .80).
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